Peppermint Panna Cotta

Serves 4  if you’re lucky…

INGREDIENTS

1 can full fat coconut milk

4 Tbsp raw cacao powder

1 Tbsp Gelatin

2 Tbsp maple syrup (optional)

1 tsp peppermint extract

1 tsp vanilla extract

DIRECTIONS

Blend all ingredients until smooth and well combined.

Then let rest in blender for 5 minutes to allow gelatin to activate.

After 5 minutes blend on high for 1 minute and distribute into ramekins.

Place in fridge to set for 3-4 hours.

 

If desired, top with whipped cream or whipped coconut cream and a sprinkle of crushed organic candy cane.

Is Chronic Stress Damaging You? Take a Salivary Cortisol Test to Find Out

835 adrenal salivary test

Many of us are too stressed out these days and this can have negative consequences on our bodies and brains, promoting chronic disease and rapid brain degeneration. If you’re concerned about the effects of stress on your body and how to manage it, an adrenal salivary test is an important ally. It can show you whether your stress hormone cortisol is too high or too low and whether this has affected your sleep-wake cycle, or circadian rhythm.

Symptoms of low adrenal hormones

  • Fatigue
  • Slow starter in the mornings
  • Crash in the afternoon
  • Crave sweets, caffeine, or nicotine to keep going
  • Prone to moodiness
  • Become shaky, light-headed, or irritable if go too long without eating
  • Wake up at 3 or 4 a.m.; inability to stay asleep
  • Become dizzy when move from sitting to standing

Symptoms of high adrenal hormones

  • Excess belly fat
  • Insulin resistance (high blood sugar)
  • Trouble falling asleep
  • Wake up not feeling rested
  • Women grow facial hair; men grow breasts
  • Polycystic ovarian syndrome (PCOS).

How to do an adrenal salivary test

To perform the adrenal salivary test, simply collect a small vial of saliva several times throughout the day using the vials in your test kit. The lab will then analyze your saliva for cortisol levels and how much cortisol you produce in the morning, afternoon, and evening. Do not something unusual or stressful on the day of your test.

It’s important to understand that low or high adrenal hormones usually don’t reflect a problem solely with the adrenal glands, two glands that sit atop each kidney and secrete adrenal hormones. Instead, chronic stress affects stress pathways in the brain, which start to dysfunction when stress is chronic.

It isn’t just being too busy, a bad job, a bad relationship, and so forth that cause chronic stress. Lesser known factors of chronic stress can include unstable blood sugar (usually from too many carbs), a chronic infection, leaky gut, or an autoimmune disease. Using second and third adrenal salivary tests allow you to track whether you’re successfully managing your condition; adrenal health should improve as these conditions resolve. If adrenal health does not improve, it means you must keep investigating to find out what is causing the body stress.

Measuring the sleep-wake cycle, or circadian rhythm

A sleep-wake cycle, or circadian rhythm, that is out of whack is one symptom of adrenal stress. If the circadian rhythm is normal, then cortisol is highest in the morning and lowest at night. This is what allows us to feel alert when we wake up and sleepy before bed. Many people with altered circadian rhythms notice they are more awake at night. Or they may notice an energy crash in the afternoon and being wide awake in the middle of the night.

The stages of stress

The adrenal salivary test measures circadian rhythm, the cortisol precursor hormones DHEA and 17 hydroxyprogesterone, and cortisol levels. It can tell you where you fall on the spectrum of adrenal fatigue to high adrenal hormones. People don’t necessarily progress from high adrenal hormone to low; adrenal function can jump back and forth between phases or stay stuck in one phase.

The adrenal salivary test also measures total secretory Ig antibodies, or (SIgA). Low SIgA levels reflect poor and dysfunctional immunity. If your SIgA levels are low, you are more prone to food intolerances, chemical sensitivities, autoimmune disease, infections, and other assaults on the immune system.

Ask my office about functional medicine protocols that can profoundly influence your adrenal health. We will also search for and manage the root causes of your adrenal stress.

Test for Gluten Sensitivity if You Have Hashimoto’s

834 hashimotos and gluten

Numerous studies show a strong link between gluten intolerance and Hashimoto’s disease, an autoimmune disease that attacks the thyroid gland, causing hypothyroidism. This is because gluten has a molecular structure that closely resembles thyroid tissue — gluten sensitivity triggers an attack on the thyroid gland. Gluten (technically, the correct term is gliadin), is the protein found in wheat and wheat-like grains, such as spelt, kamut, rye, barley, triticale, and oats.

One of the immune system’s primary jobs is to protect the body from foreign invaders. Sometimes it may recognize a common food as a dangerous invader. When you eat that food throughout each day this can keep your immune system engaged in constant battle, making it hyper zealous, overly sensitive, and thus prone towards food sensitivities and autoimmunity.

Some people also have celiac disease, disease in which gluten triggers an autoimmune attack against the gut, the skin, or neurological tissue. Gluten sensitivity is more common than celiac disease, however, both show up in higher numbers in people with Hashimoto’s hypothyroidism.

If you have been diagnosed with hypothyroidism you should first test for Hashimoto’s by screening for TPO and TGB antibodies — the majority of hypothyroidism cases are caused by Hashimoto’s.

You should also screen for gluten intolerance or celiac disease given how common these conditions are in patients with Hashimoto’s. Likewise, people who discover they are gluten intolerant or have celiac disease should screen for Hashimoto’s.

It’s important to give up gluten completely if you have Hashimoto’s and gluten intolerance. Cheats and little bites are not ok as they trigger an immune response that ultimately destroys thyroid tissue. Also, it’s important to avoid foods that have been contaminated by gluten. Be careful when in a kitchen where gluten is used, with restaurant food, or with questionable packaged foods.

Cyrex Labs offers testing to identify gluten intolerance. However, sometimes the immune system can be so depleted that it produces too few antibodies to produce a positive test, even though you react to gluten. You can screen for this with a total immunoglobulin test.

However, given the evidence establishing a link between gluten intolerance and Hashimoto’s disease, you may be surprised how much better you feel by simply removing gluten from your diet as a start.

Many people have to remove other foods as well, such as dairy, eggs, or other grains. Following the autoimmune paleo diet for about a month and then reintroducing restricted foods one at a time every 72 hours can help you determine which foods trigger an inflammatory reaction in you.

Many people are able to put their hypothyroid symptoms into remission simply by following a diet that eliminates gluten and other trigger foods. Although autoimmune diseases such as Hashimoto’s can be successfully managed through diet and lifestyle strategies, it’s important to understand they can’t be cured. It’s just a matter of taming the immune system.

Ask my office for ways to manage your autoimmune Hashimoto’s hypothyroid condition.

Viruses Can Trigger Celiac Disease and Other Autoimmune Conditions

833 virus triggers celiac

Autoimmune disease is a modern epidemic in which your body’s immune system, which normally helps defend you from pathogens, mistakenly attacks your own organs and tissues. Current research tells us multiple factors can play a role in causing autoimmunity, including viruses. More recently, a virus has been linked with celiac disease, an autoimmune disease in which symptoms are triggered by eating gluten.

Celiac disease linked with normally harmless virus in humans

Celiac disease affects one in 133 people in the United States, however only 17 percent have been diagnosed.

While former research has focused on genetic factors underlying celiac disease, a recent study found a link between celiac disease and reovirus, a normally harmless virus in humans.

The study found that mouse subjects with celiac-like disease have higher levels of reovirus antibodies than those without the disease. Those with reovirus antibodies also had high levels of a gene regulator that plays a role in loss of oral tolerance to gluten protein.

In the study, researchers took two different reovirus strains that infect humans (T1L and T3D), and tested them on mice. Both types triggered a protective immune response, but only the T1L caused the mice’s immune systems to act against gluten. This triggered a celiac-like condition in the mice.

The immune response triggered by the T1L virus was dependent on a molecule called interferon regulatory factor 1 (IRF1), which has been found in higher than normal levels in the small intestine of human children with celiac disease.

This suggests that early reovirus infection might raise the risk for developing gluten-related autoimmunity.

According to lead researcher author Bana Jabri, MD, PhD, director of research at the University of Chicago Celiac Disease Center, “During the first year of life, the immune system is still maturing, so for a child with a particular genetic background, getting a particular virus at that time can leave a kind of scar that then has long term consequences.”

Along with other researchers, Jabri is investigating the possibility that other viruses can play a similar role in autoimmunity.

Chronic viral infection makes the short list for autoimmune factors

Research increasingly indicates viruses and bacteria may play a role in the development of autoimmunity.

Viruses and bacteria trigger an immune response in the body. Some researchers suggest that the antibodies we produce in response may also attack our body’s cells. This may be because they resemble the virus or bacteria, confusing the immune system into the attack.

If you already experience lifestyle-induced chronic inflammation, this makes the immune system hyper zealous and thus more likely to erroneously attack self-tissue.

The viruses suspected in connection with autoimmunity are varied, and some are linked to multiple conditions:

  • Hashimoto’s autoimmune thyroiditis is associated with Epstein Barr virus (EBV), herpes simplex 1 and 2, hepatitis C, and cytomegalovirus (CMV).
  • Multiple Sclerosis is associated with EBV and measles virus.
  • Rheumatoid arthritis is associated with EBV, hepatitis C, E-coli bacteria, and mycobacteria.
  • Lupus is associated with EBV.
  • Type 1 diabetes is associated with coxsackievirus B4, cytomegalovirus, mumps virus, and rubella virus.
  • Guillain-Barré syndrome is associated with EBV, CMV, and campylobacter bacteria.

Know your viral exposure

Having a viral or bacterial infection is not a guarantee of developing autoimmunity, because other factors must come together for it to occur. However, it’s a good idea to take viral exposure into account when looking for the root causes and treatment of your autoimmune condition.

Some practitioners say regardless of other medical protocols, patients with autoimmunity do not go into remission unless they also address their chronic viral and bacterial infections.

Because viral infections usually occur well before any autoimmune symptoms develop, it can be difficult to make a definitive link between a specific infection and a your autoimmune disorder.

Therefore, if you are seeing your doctor about your autoimmune condition, remember to mention any infections you know you’ve had, even back in your childhood; some viruses such as Epstein Barr can persist in the body for decades without obvious symptoms. Lastly, if you don’t seem to be able to heal, ask about testing for hidden chronic viral infections as well as bacterial gut infections.

Other autoimmunity risk factors

Although there is a genetic component to autoimmunity, the following factors are linked to an increased risk of develop an autoimmune condition:

  • Females. Women represent about 75 percent of autoimmune cases. Researchers speculate women’s hormones or their active immune systems make them more vulnerable to developing autoimmunity.
  • Young to middle-aged. While the elderly can develop autoimmunity such as rheumatoid arthritis, autoimmune conditions more frequently show up in youth or middle age.
  • African American, Native American, or Latinx heritage. These ethic groups represent higher rates of autoimmunity than others.
  • Family history of autoimmunity. If your family members have had autoimmunity, you are at higher risk.
  • Environmental exposure to toxins or heavy metals. There is evidence relating toxic exposure to higher rates of autoimmunity.
  • Intestinal hyper-permeability (leaky gut). Leaky gut is present not only in all autoimmune diseases, but in other chronic illnesses such as heart disease, depression, and more.

Vitamin D Vital in Managing Autoimmune Disease

807 vitamin D

Vitamin D is one of the few nutrients we can’t get enough of from food. Our bodies are designed to make vitamin D from sunlight, yet modern life has made that difficult. The result is a worldwide 50 percent deficiency in vitamin D, even in sunny locations. This is a contributing factor to autoimmune diseases such as Hashimoto’s hypothyroidism.

Why we can’t get enough of the sunshine vitamin

While some foods contain vitamin D, our main source is supposed to be sun exposure and we synthesize it using cholesterol.

However, certain factors stand in the way:

Reduced sun exposure. We spend far fewer hours outside than our ancestors and slather on sunscreen when we are outside. People with dark skin or who live farther north have even less ability to make vitamin D from sunlight.

Limited diet. Most people don’t eat the foods that contain more vitamin D, such as organ meats, salmon and fish liver oil, and egg yolks. Two foods fortified with vitamin D — dairy (a common immune reactive food) and breakfast cereals (gluten and grains). Both dairy and gluten are also problematic for many people with Hashimoto’s hypothyroidism.

Gut inflammation and fat malabsorption. Vitamin D is fat-soluble. When the gut is inflamed due to leaky gut and other inflammatory gut disorders, fat absorption is compromised and your vitamin D levels suffer.

Stress. High cortisol levels from chronic stress can deplete vitamin D levels.

Symptoms of vitamin D deficiency can include:

  • Fatigue
  • Weakness
  • Depression
  • Muscle, joint and bone pain
  • Gum disease
  • Brittle or soft bones
  • Digestive issues
  • Asthma
  • Suppressed immune system

What vitamin D does for you

Vitamin D is actually a hormone, and along with thyroid hormone, is one of the two hormones every cell in your body needs. It regulates hundreds of different pathways throughout the body.

Bone density. Vitamin D has long been known to play a role in preventing breakdown of bones and increasing the strength of the skeletal system.

Mood regulation. Low vitamin D is linked to a 14 percent increase depression and a 50 percent increase in suicide rates. Increasing vitamin D intake can help improve anxiety and depression.

Brain health. Vitamin D’s biologically active form has shown neuroprotective effects including the clearance of amyloid plaques common to Alzheimer’s Disease. Associations have also been noted between low 25-hydroxyvitamin D and dementia.

Reduced cancer risk. Optimal vitamin D levels are associated with lower rates of cancers of the breast, ovaries, prostate, and pancreas.

Sleep quality. Adequate vitamin D is associated with improved sleep.

Immune regulation. Vitamin D plays a key role in promoting regulatory T cells, which decide whether to dampen or promote inflammation in the body.

This is particularly important in dampening autoimmunity such as Hashimoto’s hypothyroidism, when the immune system attacks body tissue.

Studies show more than 90 percent of those with autoimmunity have a genetic defect that promotes vitamin D deficiency.

Low vitamin D levels are associated with autoimmune conditions such as Hashimoto’s, hypothyroidism multiple sclerosis, type 1 diabetes, inflammatory bowel disorders, rheumatoid arthritis, and even Parkinson’s disease.

A common thread in all chronic illnesses, inflammation is shown to be reduced by adequate vitamin D levels.

Ways to boost vitamin D

Sunshine. Get 20 to 60 minutes of sun on your skin per day, depending on your skin tone and latitude. The more skin exposed, the more D you produce.

Food sources. Include salmon, mackerel, tuna, sardines, and egg yolks in your diet.

Supplementation. Vitamin D exists in two forms, D2 and D3.

While vitamin D2 is commonly seen on mainstream vitamin labels, vitamin D3 is twice as effective at raising vitamin D levels in the body.

Current mainstream dosage guidelines for vitamin D are based solely on maintaining proper bone density and not preventing chronic health conditions.

Since vitamin D is fat soluble, its recommended to take it in an oil-based soft gel capsule or liquid form with a meal that includes fat.

For autoimmune management, doses of vitamin D can range from 5,000 to 10,000 IU per day. Some people take higher doses if their genetics hamper absorption. It’s best to test your levels every three to six months.

Emulsified vitamin D

Emulsified vitamin D3 (cholecalciferol) enhances absorption and helps prevent toxicity at higher doses.

Support fat metabolism with digestive enzymes

If you have leaky gut, celiac disease, gluten sensitivity, or have had your gall bladder removed, your ability to absorb fat may be compromised. Since vitamin D is fat-soluble, make sure your body can absorb it by adding digestive enzymes to your daily regimen.

Ask my office about finding out whether you need to boost your vitamin D levels to better manage you Hashimoto’s hypothyroidism.

Managing Hashimoto’s by Supporting T reg Cells

831 supporting t reg cells hashis

When it comes to autoimmune Hashimoto’s hypothyroidism, dampening inflammation and immune attacks on the thyroid is the primary goal. One of the most powerful allies in this quest is to support your regulatory T cells (T reg cells). These are immune cells that do what their name implies — they help regulate the immune system. This means they play a role in either activating or dampening inflammation. The good news is that when it comes to Hashimoto’s, we can do many things to influence the T reg cells to dampen inflammation and quell Hashimoto’s flare ups and attacks so you can have more good days.

Ways to support T reg cells to manage Hashimoto’s

Following are some proven ways we can support our T reg cells to manage Hashimoto’s.

Vitamin D (cholecalciferol). Fat soluble vitamin D is a powerful supporter of the T reg cells, especially at therapeutic doses (around 10,000 IU a day).

Vitamin D is also important because studies show many people with Hashimoto’s have a genetic defect hindering their ability to process vitamin D. Therefore, they need higher amounts of vitamin D to maintain health. This can be the case even if a blood test shows sufficient levels of serum vitamin D. That’s because the defect is at the cellular receptor site, preventing vitamin D from getting into the cells.

Omega 3 fatty acids. The EPA and DHA in fish oil support T-reg cells. It’s important to make sure you take enough; it’s estimated 80 percent of the population are deficient in essential fatty acids.

Research shows a healthy dietary intake of supplemental omga-3 is 3,500 mg if you eat 2,000 calories per day.

The average EFA capsule is 1,000 mg. Most people in the US eat between 2,000 to 3,000 calories a day and therefore should take 4 to 6 capsules of fish oil a day. Dietary sources of omega 3 include cold water fish, nuts, and seeds.

Glutathione. Glutathione, also known as the master antioxidant, supports T reg cells and is a powerful support in dampening inflammation and managing Hashimoto’s. Straight glutathione cannot be absorbed well but there are other ways to take it, including reduced glutathione, s-acetyl-glutathione, liposomal glutathione, and glutathione precursors.

Glutathione precursors make glutathione inside the cells and include n-acetyl cysteine, cordyceps, Gotu Kola, milk thistle, and alpha lipoic acid. Don’t be shy to take large amounts of glutathione support to dampen inflammation.

Short chain fatty acids (SCFAs). SCFAs are powerful signaling compounds that influence the health of the body and brain. They are produced by healthy gut bacteria that come from eating a diet abundant in a diverse array of vegetables. The more abundant and diverse your gut bacteria the better your SCFA production.

This helps many functions in your body, including proper T reg cell function and dampening of inflammation and managing Hashimoto’s. You can also take the SCFA butyrate to support your SCFA levels, however, you’ll need to make sure you’re eating plenty of vegetables throughout the day too for this strategy to be effective.

Endorphins. Saving the best for last, did you know a powerful way to support anti-inflammatory function of T reg cells is to experience joy, happiness, love, and playfulness? All of these things produce endorphins, feel good chemicals that reduce inflammation. Methods for increasing endorphins include:

  • Socializing regularly with healthy people
  • Laughter
  • Sex
  • Healthy touch
  • Feeling love
  • Meditation and breath work
  • Massage and other forms of body work
  • Doing something playful regularly
  • Daily expression of gratitude via a journal or verbal affirmation
  • Regular exercise that gives you a “natural high” but doesn’t wear you out

These are some of the ways you can manage your Hashimoto’s hypothyroidism. Ask my office for more information.

Gut Bacteria and the Heart

832 gut bacteria and the heart

Unhealthy gut bacteria are a bigger risk for atherosclerosis, or hardening of the arteries than smoking, cholesterol levels, obesity, or diabetes. Atherosclerosis is the leading cause of heart disease.

That’s because the root cause of heart disease is inflammation. In fact, most modern health disorders are rooted in inflammation, including arthritis, diabetes, obesity, dementia, depression, and inflammatory bowel disease. Cardiovascular disease is no exception.

So where do gut bacteria come in? Researchers have discovered an unhealthy microbiome — the term given to our inner garden of gut bacteria — is pro-inflammatory while a healthy gut microbiome is anti-inflammatory. Unfortunately, Americans have the unhealthiest gut microbiomes studied thus far.

A recent study found that women experiencing hardening of the arteries also showed less gut bacteria diversity while women with healthy arteries showed healthier gut bacteria. A diverse array of gut bacteria is linked with better health.

The study also found that in healthy subjects, diverse and healthy gut bacteria produced more indolepropionic acid (IPA), a neuroprotective antioxidant that also has been shown to lower the risk of diabetes.

The gut microbiome and high blood pressure

It turns out there is more to high blood pressure than reducing your salt intake. Researchers have found high blood pressure, which increases your risk of heart disease and stroke, can also be linked to the gut microbiome.

The key is in a compound called propionate, one of several short-chain fatty acids (SCFAs) produced by healthy gut bacteria. Scientists are learning that SCFAs such as propionate and butyrate are instrumental to the health of the brain and body in many ways, with propionate being specific to the cardiovascular system.

How to foster a heart-healthy gut microbiome

Although taking propionate may help, it won’t do much good if it’s battling a minefield of infectious and inflammatory gut bacteria. Just as healthy gut bacteria produce SCFAs that are good for us, bad bacteria produce the highly inflammatory compound lipopolysaccharide (LPS).

The key to a heart-healthy gut microbiome is to eat about 25–30 grams of fiber a day via a very diverse array of vegetables and modest amounts of fruit (fruits are high in sugar and too much sugar is inflammatory).

It’s the diversity of vegetables that matters most, with research increasingly confirming that a diverse gut microbiome is what lies behind good health and a lower risk of disease.

Switch up the vegetables you eat regularly and shop at world markets unfamiliar to you to try new types of produce. Even a teaspoon of different new veggies each day is enough to help colonize the friendly bacteria that will work to keep your heart healthy.

In this fiber-rich environment, supplementing with SCFAs such as butyrate and propionate can help boost your gut bacteria to produce even more of their own SCFAs.

Additionally, make sure to keep your blood sugar stable by eliminating sugars, sweeteners, and processed carbohydrates, avoid foods that cause an immune reaction in you (for example, gluten and dairy do for many people), avoid toxin chemicals in your foods and body products that can kill good bacteria, and exercise daily — exercise has been shown to positively influence your gut microbiome.

Ask my office for more advice on how to cultivate an optimal gut microbiome and detoxify bad bacteria.

Effects of trauma and harm passed on for generations

830 epigenetics intergeneational

The notion that genes dictate our destiny has been solidly debunked in favor of epigenetics, the study of external or internal mechanisms that switch genes on and off. Exciting new research shows epigenetic memory can span multiple generations.

Studies have linked epigenetics to cognitive dysfunction, autoimmunity, reproductive disorders, cardiovascular disease, and nearly all cancers.

The Centers for Disease Control (CDC) estimates that genetics are responsible for a mere 10 percent of disease, while the remaining 90 percent is due to environmental variables.

Consider these research findings:

In rats, maternal exposure to endocrine-disrupting chemicals caused infertility in male offspring that was passed down to 90 percent of males in four subsequent generations.

Adaptations to traumatic experiences can also be passed down multiple generations as a way to inform offspring about methods for survival.

For example, mice who learned to fear a scent associated with a negative experience passed the response down two generations, despite the offspring never having experienced the same situation.

A similar transfer of responses has been observed in humans:

Exposure to starvation during pregnancy is associated with poor health outcomes for offspring such as:

  • Lower self-reported mental health and quality of life
  • Major mood disorders
  • Antisocial personality disorders
  • Schizophrenia
  • Decreased intracranial volume
  • Congenital abnormalities of the central nervous system
  • Enhanced incidence of cardiovascular disease
  • Hypertension
  • Obesity

Descendants of people who survived the Holocaust show abnormal stress hormone profiles, in particular low cortisol production. Because of altered stress response, children of Holocaust survivors can be at increased risk for PTSD, depression, and anxiety.

Children of women exposed to intimate partner violence during pregnancy have higher predisposition to mental illness, behavioral problems, and psychological abnormalities due to transgenerational epigenetic programming of genes acting in the hypothalamic-pituitary-adrenal axis (HPA axis), a complex communication pathway between glands involved in our stress response.

Classic genetic theory states that genetic change occurs over a time scale of hundreds to millions of years.

Epigenetics explains how our lifestyle, diet, environment, and experiences affect the expression of our genes over multiple generations, but it does not account for actual changes to our genetic code.

How do genetics and epigenetics relate?

Via epigenetics our genes can be influenced by factors such as:

  • Diet
  • Sleep habits
  • Where you live
  • Who you interact with
  • Exercise habits
  • Smoking
  • Environmental toxins
  • Heavy metals
  • Stress level
  • Social support (or lack of it)
  • Medications
  • Method of birth (cesarean vs. vaginal)
  • And more

We inherit one variant of each gene from each parent. Epigenetics can turn off one of these two gene variants (this is called “imprinting”).

This can result in a negative health outcome if the other, still-active variant is defective or increases our susceptibility to toxins or infections.

The cumulative impacts of our lives on our genes

Related to epigenetics is the exposome, the cumulative measure of all the exposures of an individual in a lifetime — starting at conception — and how they relate to our health. Some consider the exposome the environmental equivalent of the human genome.

The exposome is divided into three overlapping categories:

The environment inside our bodies that affects our cells:

  • Hormones and other cell messengers
  • Oxidative stress (excess highly reactive and damaging molecules)
  • Inflammation
  • Lipid peroxidation (damage to cell membranes and other molecules containing fats)
  • Body shape
  • Gut microbiota
  • Aging
  • Biochemical stress

The external environment to which we expose our bodies:

  • Diet
  • Lifestyle
  • Occupational factors
  • Pathogens and toxins
  • Radiation
  • Medical interventions

The general external environment, including broader sociocultural and ecological factors:

  • Socioeconomic status
  • Geopolitical factors
  • Psychological stress
  • Education status
  • Urban or rural residence
  • Climate

Using epigenetics to positively impact the future

Epigenetic processes are natural and essential to many bodily functions. But if they go wrong they can negatively impacts not only our health but the health of our children. Researchers feel the ability for these changes to be passed down has significant implications regarding evolutionary biology and disease causation.

There are factors we have no control over such as certain environmental toxins, method of birth, and exposure to some level of stress. The good news is we can affect change in many areas that can powerfully affect our epigenetics:

  • Anti-inflammatory diet
  • Daily exercise
  • Stress-relief activities
  • Good sleep habits
  • Who we interact with
  • Antioxidant status
  • Not smoking
  • Social support
  • Addressing food intolerances
  • Mediating autoimmunity

Functional medicine offers many avenues to support healthy epigenetic expression. If you seek ways to help your body express its genes in the best ways possible, contact my office for help.

Berberine rivals metformin for high blood sugar

829 berberine for high blood sugar

In functional medicine one of the most common causes we see for many health disorders is imbalanced blood sugar. The good news is it is also one of the easiest things to remedy. A powerful tool in this process is a botanical compound called berberine.

An epidemic of blood sugar imbalances

According to the CDC, nearly 84 million American adults — more than one out of three — have prediabetes, or metabolic syndrome, a serious health condition in which blood sugar levels are too high but not high enough to be diagnosed as type 2 diabetes.

Ninety percent of people with prediabetes don’t even know they have it. Prediabetes puts you at increased risk of type 2 diabetesheart disease, stroke, obesity, autoimmunity, infertility, dementia, and other disorders.

In fact, high blood sugar is so clearly linked to Alzheimer’s that researchers refer to the disease as “Type 3 diabetes.”

Berberine for high blood sugar and diabetes

A natural plant compound, berberine is found within the stems, bark, roots, and rhizomes (root-like subterranean stems) of numerous plants such as barberry, goldenseal, Oregon grape, tree turmeric, and Chinese goldthread.

Berberine is generally well tolerated and has been used in Chinese and Ayurvedic medicine for thousands of years to treat digestive issues and infections. The extract has a deep yellow color and is also commonly used as a dye.

Recently, berberine has become known for its ability to reduce high blood glucose. By working at a cellular level, it helps move glucose (sugar) from your blood into your cells where it’s most needed.

Berberine also promotes healthy blood sugar levels that are already in normal range.

Berberine works by activating AMPK (adenosine monophosphate-activated protein kinase), an enzyme that that regulates how the body produces and uses energy.

AMPK senses and responds to changes in energy metabolism on both the cellular and whole-body level. It regulates biological activities that normalize lipid, glucose, and energy imbalances.

Metabolic syndrome happens when AMPK-regulated pathways are turned off. This triggers fat storage and burning abnormalities, high blood sugar, diabetes, and energy imbalances.

Depleted energy activates AMPK while excess energy inhibits it. In other words, high blood sugar inhibits AMPK while exercise and calorie restriction activates it.

Berberine’s effect is similar to what you’d see in someone who increased exercise while restricting calorie intake because it activates AMPK, making it a useful tool in the management of type 2 diabetes.

Berberine as effective as metformin

Other known AMPK activators include resveratrol and the diabetes drug metformin. Berberine is so effective at balancing blood sugar that both animal and human studies compare it to metformin in its effectiveness.

Berberine has also been shown to be as effective in treating other conditions that respond positively to metformin, including polycystic ovary syndrome (PCOS), the reduction of weight gain triggered by antipsychotics, and potentially cancer.

Berberine’s many qualities

While berberine is most commonly considered for metabolic syndrome, inflammation, and cancer, its potentially helpful for a long list of other disorders, including high cholesterol, obesity, small intestine bacterial overgrowth (SIBO), leaky gut, lung inflammation, Alzheimer’s disease, and heart disease due to these actions.

Below are additional functions of berberine:

  • Supports healthy blood cholesterol levels.
  • Has antioxidant and anti-inflammatory qualities.
  • Has a moderate weight-loss effect.
  • Exhibits antibacterial qualities.
  • Reduces the effects of tobacco smoke-induced lung inflammation.
  • Inhibits growth and proliferation of cancer cells.
  • Enhances neuro-protective factors.
  • Stimulates the release of nitric oxide, a signaling molecule that relaxes arteries, increases blood flow, and protects against atherosclerosis.
  • Stimulates bile secretion and bilirubin discharge.
  • Reduces dysfunction of the intestinal mucosal barrier.

How much berberine should I take?

For diabetes and blood sugar support, the recommended dose is 500 mg two or three times a day. It’s important to spread your dose out throughout the day because berberine has a short half-life in the body and taking it all at once might rob you of the full benefits. Make sure to take berberine prior to or with a meal.

Studies show that gut bacteria play an important role in transforming berberine into its usable form. Therefore, supporting microbiome diversity and abundance is a smart way to increase its effectiveness. Make sure to eat varied and plentiful produce (go easy on the sugary fruits) and consider supplementing short chain fatty acid supplementation (SCFA) to help your gut bacteria thrive.

How long should I take berberine?

Continual use of berberine can impact cytochrome P450 (CYP) enzymes in the liver which may affect drug-to-drug interactions. Therefore, it’s recommended to use it in a pulsed 8-week cycle with two to four weeks off, then starting again if symptoms have not resolved.

Research has shown that combining berberine with cinnamon may increase its bioavailability. What’s more, cinnamon has also been shown to support insulin sensitivity.

Berberine cautions

While berberine is highly recommended for high blood sugar issues, it does come with some cautions:

  • Berberine is considered UNSAFE for pregnant women and nursing mothers. It may cross the placenta during pregnancy, and some newborns exposed to berberine developed a type of brain damage. It also can be transferred to babies through breast milk.
  • Berberine can interact with a number of medications, increasing the risk of adverse reactions.
  • Taking berberine when you are on medications that reduce blood sugar can push your blood glucose levels too low.
  • Berberine can lower blood pressure, so it should be used with caution by anyone who already has low blood pressure. 

If you are concerned about your blood sugar status and want to discuss non-medical methods for helping regulate your blood sugar, contact my office.

Weight training offers the most benefits for seniors

827 weight training best for seniors

Weight training is not the first exercise choice that comes to mind for seniors. Instead we think of chair yoga, walking, dancing, or aqua aerobics. However, science shows weight training is one of the best types of exercise for aging whether you’ve been doing it your whole life or have never touched a barbell in 60-plus years.

Of the 57 million deaths worldwide in 2008, more than 5 million were caused by lack of physical activity. Roughly 80 percent of adults fail to meet recommended guidelines for physical activity.

For seniors in particular inactivity and a sedentary lifestyle are dangerous, increasing the risk of health conditions such as:

  • High blood pressure
  • Heart disease
  • Stroke
  • Obesity
  • Cholesterol issues
  • Metabolic syndrome
  • Diabetes
  • Cancer
  • Depression

There is a common misperception that the elderly should stay away from strenuous activity. It is important to use safe equipment, focus on correct form, and warm up and cool down properly, but using your muscles as you age isn’t inherently dangerous.

In fact, studies show that lifting weights — whether heavy or light — helps us in many ways as we age.

Weight training reduces the risk of falling by maintaining or even increasing muscle mass and helping maintain bone density. This makes the elderly much less susceptible to age-related and disabling bone breaks from falls or accidents.

This also helps stave off loss of independence, one of the greatest worries around aging.

Strength training can promote mobility and function and even help combat depression and cognitive decline.

An analysis of the National Health Interview Survey (NHIS) database found that adults 65 and older who strength trained twice a week had a 46 percent lower mortality rate. He also found strength training reduces all causes of death, including cancer and cardiac death.

Drawing from the data, the analysis outlined 78 science-backed benefits for seniors who lift weights. The main categories include:

  • Combat age-related muscle loss and sarcopenia
  • Burn fat and increase muscle mass
  • Support functional independence
  • Improve quality of life
  • Improve osteoarthritis and bone health
  • Increase cardiovascular health
  • Improve mental health and cognitive functioning
  • Reduce mortality risk
  • Fight Type 2 diabetes
  • Improve quality of sleep
  • Recover from hip fractures

The study showed that those who had lifted regularly for some time were protected against numerous age-related health issues related to neuromuscular functioning, sarcopenia, muscle force-generating capacity, cognitive functioning, overall functional capability and performance, and mitochondrial impairment.

Is weight lifting riskier in old age?

Lifting weights risks at any age, however, hundreds of studies have shown weight training to be safe, enjoyable, and beneficial as we get older.

Anyone can get injured when working out, so knowing how to safely use equipment, warming up and cooling down properly, and using proper form will keep you in action.

Before starting, have a medical checkup or ask your doctor for clearance. This is especially true if you haven’t exercised before or have taken a long break from physical activity.

What type of weight training is best?

Weight training is an activity anyone can start regardless of age. It doesn’t take lifting like a competitor to gain major benefits, and many of the benefits are immediate. As you train, your cardiovascular and musculoskeletal fitness will improve, thus helping you to prevent injuries as you progress.

Whether you train using your body weight, dumbbells, systems weights, full Olympic style, or with some other style, focus on gradually increasing intensity and power.

A personal trainer can help you meet your goals with a form that works for you, plus teach you how and when to safely increase your challenges. Finding a weight training style you like will motivate you so you keep showing up for workouts — whether it’s at the gym or in your living room.

Before starting any exercise program, be sure to consult with your health care practitioner, and if you are uncertain where to begin, reach out to a local certified personal trainer who can guide you.